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Abstract

Since their development, social media has grown as a source of information and has
a significant impact on opinion formation. Individuals interact with others and content
via social media platforms in a variety of ways but it remains unclear how decision
making and associated neural processes are impacted by the online sharing of
informational content, from factual to fabricated. Here, we use EEG to estimate
dynamic reconfigurations of brain networks and probe the neural changes underlying
opinion change (or formation) within individuals interacting with a simulated social
media platform. Our findings indicate that the individuals who show more malleable
opinions are characterized by less frequent network reconfigurations while those with
more rigid opinions tend to have more flexible brain networks with frequent
reconfigurations. The nature of these frequent network configurations suggests a
fundamentally different thought process between the individuals who are more easily
influenced by social media and those who are not. We also show that these
reconfigurations are distinct to the brain dynamics during an in-person discussion
with strangers on the same content. Together, these findings suggest that network
reconfigurations in the brain may not only be diagnostic to the informational context
but also the underlie opinion formation.

Author Summary

Distinctive neural underpinnings of opinion formation and change during in-person
and online social interactions are not well understood. Here, we analyze EEG
recordings of the participants interacting with a simulated social media platform and
during an in-person discussion using a network-based analysis approach. We show
that the structure of network reconfigurations during these interactions is diagnostic
of the opinion change and the context in which information was received.
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Introduction

Decision making is the internal process by which information is reduced to a
categorical and actionable proposition (for review, see Gold & Shadlen, 2007). In the
brain, the decision making process has been described as a non-linear,
context-dependent process that requires a variety of brain areas to receive and
interpret information (e.g., sensory), establish value of this information, and then,
based on prior experience and motivation, use a decision variable to produce the
proposition and subsequently act (Fellows, 2004). One context that is currently and
almost ubiquitously used as a source of information is social media, the suite of
interactive online technologies that have become a mainstay of not only our
everyday interactions but also current events and global happenings (Westerman et.
al., 2014). Because of the ubiquitous nature of social media, the unbridled spread of
information through it (Yoo, et. al. 2016), and the potentially negative consequences
of it (Keles et. al., 2020), it is important to understand how it shapes our thoughts,
influences our opinions, and impacts our future actions.

The neurological processes underlying the formation or changing of opinions due to
social media exposure have been studied from the perspective of the presence and
nature of biased content, and the way in which others interact with the information
(e.g, likes, comments, retweets, etc.). Prior neuroscience work has specifically
studied the effect of social influence on opinion formation and opinion change within
the social media environment, where a network of brain regions including the
striatum, orbitofrontal cortex, and temporoparietal junction appear to have a critical
role in this decision making process (Cascio et al., 2015; Casado-Aranda et al.,
2020; Sherman et al., 2016; Baek et al.,2021; Nakao et al., 2016; Falk et al., 2012;
Falk & Scholz, 2018; Kappes et al., 2020; Izuma & Adolphs, 2013; Li et al., 2019;
Klucharev et al., 2011). Specifically, the neural mechanism of opinion change due to
social media use has been shown to integrate brain areas of the valuation, social
pain/exclusion, and mentalizing systems which include the ventro-medial prefrontal
cortex (VMPFC), striatum, medial prefrontal cortex (mPFC), dorsomedial prefrontal
cortex (DMPFC), temporo-parietal junction (TPJ), posterior cingulate (PCC), medial
tegmental gyrus (MTG), and anterior cingulate (ACC) (Cascio et al., 2015; Baek et
al.,2021; Kappes et al., 2020; Falk et al., 2012). Other work has suggested that the
popularity of content (Sherman et al., 2016) and the valence of the content plays a
significant role in swaying opinion on these platforms (Baek et al., 2021). Due to the
opportunity social media affords in rapidly disseminating information throughout the
globe, it also creates an interesting glimpse into the complex human decision making
process that impacts our everyday lives (Schmalzle et. al., 2017). Indeed, with the
intensity and speed in which information spreads in this media convolved with the
global scale, the contextual impact on decisions derived from platforms like these
have had demonstrably profound impacts on society as a whole (Spinney, 2017).

Despite the understanding of the importance of these platforms in forming our
decisions, it is still unclear how brain networks composed of regions, perhaps those
associated with social media informational processing and influence, interact to
produce opinion change. Importantly, it is also unclear how this process may be
unique to brain processes underlying in-person interaction and free discussion.
Network neuroscience provides a variety of tools to understand the complex network
properties of the brain and has proven successful in describing a variety of behaviors
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(e.g., Bassett and Sporns, 2017 or Betzel and Bassett, 2017). For example, the rate
at which networks within the brain rapidly reconfigure to support cognition has been
found to be highly predictive of a variety of cognitive processes. Dynamic community
detection, a technique used to distill complex connectivity patterns into time-varying
labels of communities (i.e., clusters of nodes) has been successful in capturing
variability in a variety of behaviors. This so-called flexibility has been used to
describe the rate of motor learning (Bassett et al., 2011; Bassett et al., 2013; Gerraty
et al., 2018; Li et al., 2019; Reddy et al., 2018), and associated with multi-tasking
(Alavash et al., 2015; Shafiei et al., 2020; Thomas Yeo et al.,, 2015), pattern
recognition (Telesford et al., 2016), language comprehension (Chai et al., 2016),
thought rumination (Han et al., 2020; Lydon-Staley et al., 2019), adaptations to new
stimuli or stress (Paban et al., 2019; Betzel et al., 2017), and working memory
(Braun et al., 2015; Lauharatanahirun et al. 2020). Here, we have investigated the
rapid fluctuations in network connectivity while individuals are exposed to an
interactive social media platform containing factual and fake content and relate this
to changes in opinions after exposure to this content, as we hypothesize that the
flexible dynamics within the brain may be associated with complex decision making
behind opinion change. Importantly, we provide a comparison to in-person
discussion which allows us to disentangle the unique neural properties of this
process. Our results provide preliminary evidence of unique neural features marking
the cognitive processes supporting decision-making prompted by digital stimuli on a
social media platform.

Results

We have investigated the neural correlates of complex decision making during online
social media and in-person social interactions and assessed opinion change with
questionnaires that asked participants for their opinions on several topical issues.
Opinions on these topical issues were gathered before and after the interaction with
a simulated social media platform and after in-person discussion of the content
(Figure 1, see also Richard et. al., 2021). EEG was concurrently collected (see
Supplemental Material Figure S1 for electrode montage) during the social media and
in-person interactions and was analyzed to understand the rapid reconfigurations in
EEG-derived brain connectivity matrices during the complex process of information
gathering and opinion change and/or formation. Here, we used dynamic community
detection, an algorithm that has previously been shown to successfully capture brain
network reconfigurations associated with the variability in human behavior across a
variety of tasks. We extended these findings by inspecting the temporal dynamics of
node-pair community affiliations and comparing this metric between those that
changed their opinions and those that did not across these social interaction
conditions.

Characterizing rigid and malleable opinionators in social media and in-person
interactions

Figure 1A shows the experimental timeline, where, after arriving in the laboratory,
subjects were presented with questionnaires that asked their opinions on particular
real-world topical issues that included (i) travel based on social awareness and
volunteerism, (ii) punishment after a murder trial, and (iii) decisions to vaccinate from
disease before and after interaction with the social media platform as well as after
the in-person discussion segment. EEG was recorded during these two interactive
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conditions, i.e., social media interaction and in-person discussion. Figure 1B-D
shows the distribution of responses and the rate of opinion change across
participants (N = 132) following both conditions. First, with the social media platform,
a majority of individuals did not change their opinion from the initial survey (N = 75);
however, a total of 57 individuals changed their opinions, with the most individuals
changing their opinion in the murder trial scenario (N = 39). A small proportion of the
individuals (N = 10) changed their opinions in two scenarios and were most likely to
change their opinion on the travel and murder scenarios (Figure 1B). Figure 1C
displays a more granular visualization of responses for each scenario, and similar to
the design of the experiment which presented equally positive and negative
coverage on an issue, there was a large diversity in opinion changes, validating the
well-balanced affectual information within the platform. For example, even with the
vaccination scenario, there were some individuals who changed their opinion toward
not vaccinating after the social media interaction. Importantly, as well, is the fact that
the change in prison time in the murder trial contributed to the largest changes, with
24 subjects changing the prison time after the social media interaction and 24
changing from guilty to not guilty.

We observed some similarities and differences in opinion change after in-person
discussion. As shown in Figure 1D-E, the overwhelming majority of individuals
(73.5%, N = 97) did not change their opinion, suggesting that the in-person
discussion was less likely to affect one’s opinion than social media interaction;
however, the order of the questionnaires was the same across all individuals. This
limitation does not allow us to disentangle the effect questionnaire order may have
on our effects. Similar to the social media interaction condition, though, changes in
opinion mostly occurred within the murder trial condition, accounting for 80% of the
total changes in opinion after the discussion. Very few individuals changed their
opinion in more than one scenario, accounting for only 8.6% of the total opinion
change after the discussion.

Finally, to characterize the opinion change, overall, we estimated transition
probabilities as presented in Figure 1F. These transition probabilities can give us a
glimpse into the individuals that did and did not change their opinions following the
social media interaction and in-person interactive conditions. As is shown in Figure
1F, 56.8% of the subjects that did not change their responses after social media
interaction, referred here as rigid opinionators, 74.7% of these rigid opinionators also
kept their responses after in-person discussion. From the 43.2% of the subjects that
changed their responses after the social media interaction, referred here as
malleable opinionators, 28.1% changed their responses after in-person discussion
as well. Importantly, of all the participants, 73.5% did not change their opinion after
in-person discussion. Due to the distribution of those that did not change their
opinion and those that did, we next compared the rigid and malleable opinionators
within this population.


https://doi.org/10.1101/2021.12.07.471625
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471625; this version posted December 9, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

A l_ EEG recording session _I
L (] L

I— Questionnaire 1 == Social media = Questionnaire 2 == Discussion = Questionnaire 3 —I

platform interaction

Social media platform opinion change

B - C Travel Trial Vaccine
Travel
..2 70 = Ezlcine Change on ’;‘Ot Q':ﬂ'yty
60 W Travel + Trial volunteering option O gui

g I Travel + Vaccine Yes to Noto
= 50 B Trial + Vaccine France to a no yes
"LE) 40 2 Indonesia

©

S 20 .

B . A

H# 10 — Indonesia Guilty to

o to France Change on not guilty
0 1 2 prison time
Scenario opinion change
Discussion opinion change
D E Travel Trial Vaccine

_9 100 = Pa\{el

C nal. Change on Guilty to

8 80 = ¥r?\2r|]i Trial volunteering option ind . not guilty Not guilty Noto
= h i ndonesia i

:(E> 60 B Trial + Vaccine to France ) to guilty

1

@ 40

o

‘5 2

o —.__

S 0 . ! h 2 France to Change on
cenario Oplnlon c ange Indonesia prison time
F 56.8% 43.2%

28.1%
25.3%

73.5% 26.5%

Figure 1: Experimental setup and opinion change quantification. (A) Timeline of
the experimental design. The opinion changes of each subject were assessed
through the application of a questionnaire before and after the subject interaction
with the social media platform, in addition to in-person discussion. (B,D) Histogram
of opinion change by scenario in social media interaction and in-person discussion,
respectively. 0, 1, and 2 indicate the number of scenarios on which individuals
change their opinion. Color legend indicates the scenario. (C,E) Pie charts indicating
the direction of opinion change for all of the changes observed after the social media
platform and in-person interactions. (F) Flow chart indicating the fraction of
participants that changed their opinion from the social media platform interaction to
in-person discussion.
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Nodal Flexibility distinguishes rigid and malleable opinionators

We hypothesized that complex decision making and information processing requires
the reconfiguration of underlying brain networks. To test this hypothesis, we applied
a dynamic community detection analysis to the EEG data and probed how network
reconfigurations are associated with opinion change by directly comparing the rigid
and malleable opinionators (Figure 2). This was accomplished in several steps. First,
the dynamic community structure requires an estimate of the underlying statistical
dependency between nodes. Here, we estimated this statistical dependence, or
functional connectivity of the EEG using the pairwise weighted phase lag index
(WwPLI) separately for commonly studied EEG oscillations (i.e., delta (1-3 Hz), theta
(3-7 Hz), alpha (8-13 Hz), beta (21-30), and gamma (25-40) bands) in
non-overlapping 10 sec time windows. This data-driven approach to functional
connectivity exploits phase-based relationships within the data, yielding connectivity
matrices that are reliable and less susceptible to some expected artifacts without
requiring parameterization (Hardmeier et. al., 2014). Once calculated, the wPLI
matrices were used to determine the community structure by modularity
maximization using a Louvain algorithm (see Methods). This distilled the connectivity
time evolving matrices into an average of 315 (SD = 102) time windows of
community labels that represent the band-specific community affiliations of EEG
sensors across time.
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Figure 2: Flexibility differences between the rigid and malleable opinionator
groups. (A-E) Topographic plots of each frequency band showing the difference of
the mean flexibility between the two groups such that positive values (in yellow)
indicate an increased flexibility for rigid opinionators. The black tokens (orbs, Xx’s)
indicate sensors with statistically significant differences in flexibility between the two
groups as found via a bootstrap procedure (see Methods). On the right, we show
representative bootstrap distributions of the mean flexibility of the sensors marked by
an x for the two groups with rigid opinionators in purple and malleable opinionators
group in green.

From these affiliations (i.e., distilled connectivity matrices), we estimated sensor
(node) flexibility which is a measure of how much each node changes its affiliation
across time in the opinion-rigid and -malleable individuals. Since the data is not
balanced between the groups, we employed a bootstrap procedure to estimate the
distributions of mean flexibility for each of the EEG sensors for both of the groups,
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and subsequently compared the node flexibility between rigid and malleable
opinionators (see Methods). We observed that those rigid in their opinion showed
significant increase in node flexibility in the alpha, beta, and gamma bands and
decrease in flexibility in the theta band. Figure 2 shows the node flexibility
differences, yellow (or blue) shades indicate an increased flexibility on the rigid (or
malleable) group. An increased node flexibility in those with rigid opinions was
observed in the higher frequency bands, with beta showing differences with
statistical significance (bootstrap analysis, p < 0.05) for sensors F8, F4, Fp1 and
T5, gamma for T5, and alpha for C4. On the other hand, theta band presents a
statistically significant decrease in node flexibility of the rigid opinionators on sensors
P4 and Fp2. These results indicate that the dynamics of the
synchronization-desynchronization processes, as measured by the wPLI| coupled
networks, play an important role in the underlying mechanism of opinion change
during the social media interaction condition.

Assessing dynamic changes in community structure

We found that the node flexibility is informative as a neural marker of opinion
change; however, it does not provide much information of the dynamic changes in
the community structure to further understand the underlying network
reconfigurations leading to opinion change. For example, one could ask how the
links of the flexible nodes evolve with time and which other nodes couple and
decouple with them more often during the task. In this regard, allegiance is a
commonly used metric that captures the fraction of time two nodes share the same
community affiliation, O for a pair of nodes that never share a community and 1 for
nodes that are always in the same community. We estimated node allegiances for
rigid and malleable opinionators and found that they do not differentiate the two
groups (for further details, see Supplemental Materials and Figure S2). However, it is
also unclear from allegiances alone whether more fine-grained temporal dynamics of
network reconfigurations might differentiate these groups. To more finely understand
the temporal evolution of node-pair affiliation change, we computed a new metric
called intermittence.

Like allegiance, intermittence is a measure of the interaction between two nodes of
the network; however, while allegiance captures the fraction of time two nodes
belong to the same community, intermittence tracks how frequently the two nodes
change their affiliation from the same to different and vice versa. In other words,
intermittence differentiates two nodes’ affiliation changes that occur in rapid bursts
from affiliation changes that occur in longer-term after more static community
affiliation similarity. Together, we may inspect allegiance as the likelihood for two
nodes to be in the same community, and intermittence can inform us of the temporal
nature of this relationship.
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Figure 3: Comparing intermittence and allegiance in opinion change. (A)
Scatter plots of the relationship between intermittence and allegiance for each
frequency band of interest, where purple (or green) indicates channels of rigid (or
malleable) opinionators. Dashed vertical line indicates the middle value of allegiance.
(B) Bootstrapped difference (rigid - malleable) plots of intermittence of the subject
groups for different threshold levels of allegiance for each frequency band of interest.
Shaded region is 95% confidence interval and the vertical dashed line indicates the
midpoint of allegiance. (C) Allegiance thresholds that survive statistical comparison
of rigid and malleable opinionators for each frequency band.

Intermittence differentiates changes in opinion

In exploring the intermittence metric, we first directly compare the allegiance and
intermittence metrics for both rigid and malleable opinionators (Figure 3A). We
observe for lower frequency bands (e.g., delta) that intermittence is more variable,
spanning a wider range of values than higher frequency bands while the opposite is
true for allegiance. Specifically for the delta band, values of allegiance larger than
0.6 are less frequent than observed for the other frequency bands and values of
intermittence above 0.1 are more frequent than for the beta and gamma bands. On
the other hand, inspecting higher frequency oscillations, we see intermittence is
rarely above 0.05 but allegiance spans the entire range of possible values. This
suggests that there is a higher propensity for more static network reconfigurations at
higher frequencies than lower frequencies (e.g., compare Figure 3A gamma and
delta). Importantly, with intermittence estimation, simply by its calculation, allegiance
imposes an inherent restriction on its range of possible values. The maximum value
of intermittence for a given pair of nodes is limited by the value of allegiance
between those nodes, as the reader should understand that there cannot be more
dynamic changes between nodes if they are rarely ever in the same community.
Thus, given our observation that higher frequency bands (beta, gamma) had higher
allegiance (that could allow for higher intermittence) in addition to the observed lower
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average intermittence, the finding that higher frequency bands show are even more
striking, suggesting higher frequencies display very static network dynamics across
groups.

In Figure 3B, we show the differences between the means in intermittence of the two
groups. Critically, mean bootstrap distributions were calculated using only those
points with associated allegiance values higher than the allegiance threshold
indicated on the x-axis. The shaded area in Figure 3B represents a 95% confidence
interval and was obtained by a bootstrap procedure with 10,000 samples (see
Methods). To summarize the statistical comparison between rigid and malleable
opinionators at each of the frequency bands, Figure 3C shows those allegiance
thresholds that display the statistical difference (p < 0.05).

Comparison of the mean intermittence between the two groups shows that the
intermittence metric can delineate between rigid and malleable opinionators in each
frequency band, but to a highly variable extent. For example, our results show that
within the delta band, we observed statistically significant differences for the
allegiance threshold range between 0.29 and 0.43 and a few other allegiance values
accounting for more than 14% of the possible allegiance range values. For the theta
band, there were minimal differences between groups observed accounting for only
2.8% of the total allegiance range. Within the alpha band, we observed, again,
minimal differences between the groups accounting for less than 5% of allegiance
thresholds; importantly, they were observed mostly at the lowest allegiance
thresholds. The most robust differences between the rigid and malleable
opinionators were observed within the beta and gamma bands. For the beta band,
we observed significant differences between the groups in approximately 43% of the
allegiance threshold range. The lowest p-values we observed between rigid
opinionators group (M = 0.018 a.u.) and malleable opinionator (M = 0.017 a.u.) was

for the allegiance threshold of 0.12 (p = 2.7 X 10_5). The largest range of
allegiance values with significant differences between the two groups were observed
in the gamma band, accounting for nearly 65% of the entire allegiance range. The
lowest p-value was observed at an allegiance threshold of 0.29 for rigid (M = 0.018

a.u.) and malleable (M = 0.016 a.u. p = 3.6 X 10_6) individuals. Thus, it appears
that intermittence successfully delineates rigid and malleable opinionators, but does
so in a frequency band specific manner where the beta and gamma bands show the
most robust differences as indicated by a wide range of allegiance thresholds for
which the two groups have a significant difference in intermittence. In other words,
intermittence can be used to characterize opinion change in band-specific oscillatory
schemes, but it is still unclear whether this is a general opinion change phenomenon
or if this may be specific to the context in which information is received (i.e., social
media platform). Thus, we next explored how the malleable and rigid opinionators
differ during in-person discussion.
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Figure 4: Social Media and face to face discussion comparison. (A-E) Mean (left
column) and standard deviation (right column) of estimated degree within two
consensus communities and across them for each frequency band (A) delta,(B)
theta, (C) alpha, (D) beta, and (E) gamma. Each panel presents results for the rigid
(purple-red) and malleable (blue-green) opinionators interacting with the Social
Media platform and during in-person discussion. Statistical differences were
performed with a Welch'’s t-test andare represented with an asterisk and are shown
both within group and across social interaction contexts (* p < 0.05, **p < 0.01, ***
p < 0.001).
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Social media interaction and in-person discussion differences

To determine the specificity of our findings to the social interaction context (e.g.,
social media vs in-person discussion), we sought to determine if network dynamics
between malleable and rigid opinionators have similar structure during social media
and in-person interactions. To carry out this comparison, we first derived a
consensus community organization from the network reconfigurations (Doron et al.,
2012) during social media interaction (removing the temporal aspect, see
Supplemental Material) and used that as a reference to compare two different social
interaction scenarios. We observed that on an average, during social media
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interaction, all the nodes can be divided into two large communities (Figure S3); one
anterior region with 11 sensors (Fp1, F7, F8, T3, Fp2, F3, Fz, F4, C4, C3, Cz) and
the other, a posterior region with 9 sensors (T4, T6, T5, O1, P3, Pz, P4, POz, O2).

We estimated how the connectivity of nodes within (and between) these
communities change for the two groups (i.e., rigid and malleable) across two
conditions of social interactions. For simplicity, we chose the nodal degree as a
measure of connectivity of each node. The degree of a node is calculated as the
sum of all its connections. We estimated the standard deviation and mean of nodal
degrees within and between each community and compared their distributions for
rigid and malleable opinionators for both the interaction conditions.

As shown in Figure 4, comparing the mean degree between rigid and malleable
opinionators, we observed clear differences, during the social media interaction, but
not as much during the in-person discussion. For example, the mean and standard
deviation for malleable opinionators was significantly higher than those of rigid

opinionators within the beta band (p < 1 X 10 >%0or both communities and

cross-community degree) and gamma band (p < 1 X 10> for both communities
and cross-community) during social media interaction. Whereas, this difference was
not present during the in-person discussion when comparing these groups (all
p > 0.05).

Other observed differences in the social media condition were within the delta and
alpha bands where those rigid in their opinions displayed significantly higher degree

than those malleable in their opinions (delta: p < 1 X 10" for both communities

and cross-community, alpha: p < 1 X 107" for both communities and
cross-community) during social media interaction but not during in-person
interaction. We also observed some differences between social interaction conditions
(light gray horizontal bars, Figure 4), but were primarily for the malleable
opinionators, especially in the alpha, beta and gamma bands. The delta band
contained the most differences across social interaction context (social media
interaction vs in-person discussion) while the beta and gamma bands contained the
most differences in groups derived by opinion change. These results provide
evidence to the uniqueness of neural dynamics during opinion change (or formation)
in a social media interaction and suggest that social context and decision making
trigger fundamentally different processes within the brain.

Discussion

Decision making is a complex internal process by which information is consumed
and an action is executed, requiring the support of many interacting brain networks
composed of a variety of functionally diverse regions within the brain (for review, see
Fellows, 2004; Rilling and Sanfey, 2011; Wallace and Hofmann, 2021). The present
study investigated the impact of informational context and its type on decision
processes, specifically how social media and in-person discussion influences one’s
malleability to change one’s mind on “highly shared” content in online platforms. Our
findings have shown a large portion of individuals (e.g.,19.7% in vaccination
hesitancy) were susceptible to content displayed to them on a simulated social
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media platform while the same individuals were not susceptible to freeform and
in-person discussions on the same topics. Using dynamic community detection (see
Garcia et al., 2018 for a review) and estimating the temporal dynamics of network
reconfigurations that occurred across several frequency bands, we found that the
flexibility of specific sensors across the scalp could discriminate between those that
are and are not influenced by content presented in a simulated social media
platform. Importantly, rigid opinionators showed higher flexibility in sensors located
within the frontal and posterior regions for the higher frequency bands (i.e., alpha,
beta, gamma) whereas, the opposite effect is observed in theta band where higher
flexibility was observed for the malleable opinionators within prefrontal and posterior
sensors. Our results extended the flexibility findings to show that the vigor in which
the network changes occurred was driving this effect with a new metric we call
intermittence. Interestingly, intermittence within the higher frequency bands was
more robustly diagnostic for different opinionators than lower frequency bands.
Moreover, while our results did not show substantial change in opinion after
in-person discussion (only 35 people changed their mind after in-person discussion),
we also did not find any of the observed brain network reconfiguration changes
during in-person interactiont condition.

Network flexibility is a marker of opinion rigidity

Our findings support the increasing evidence suggesting the importance of the rapid
reconfigurations of brain networks in cognition, and specifically, here, decision
making as it pertains to opinion change and/or formation (for review, see Shine and
Poldrack, 2018). We used flexibility as the probability a particular node (i.e. sensor)
changes its affiliation across time. Previous studies show that this type of
network-defined flexibility in frontal brain regions is associated with faster motor
learning (Basset et al., 2011), psychological resilience (Paban et al., 2019), chronic
behavior change in addiction (Cooper et. al.,, 2019), enhanced working memory
performance (Braun et al., 2015) -- which is also moderated by sleep (see
Lauharatinahirun et al., 2020) -- and even improved adaptive problem solving skills
(Barbey et al.,, 2018). Given the diversity in these behavioral findings and our
extension to even social media influence, it is reasonable to attempt to understand
how this metric may be highly sensitive to a variety of complex cognitive
phenomena.

Indeed, the neuroscientific journey that has led to the importance of flexibility in
neural behavior may be understood from several different perspectives, and it is
currently thought to be the foundation to the human’s unique ability to rapidly adapt
to task demands. First, it should be noted that we have estimated network-based
flexibility via a mathematically defined dynamic network approach (see Methods) and
on its surface it should not be confused with concepts such as cognitive flexibility
(Uddin, 2020) and neural flexibility (Yin & Kaiser, 2021), but it can be complementary
to both (Mattar et al., 2016). Cognitive flexibility refers to the executive functions that
allow an individual to rapidly transition from task to task and has been found to be
associated with improved performance in a variety of tasks and also is reduced in
certain pathologies (Hanes et. al., 1995). In contrast, neural flexibility, while often
used in relation to cognitive flexibility, refers to the brain’s ability to rapidly shift
across tasks and be recruited for a variety of activities (Uddin, 2020). Dynamics in
the neural signal have previously been discarded as noise, but are now accepted as
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describing valuable variability in human behavior and even psychopathology (Uddin,
2020). Our findings not only add to this growing literature and support the network
science approaches that can successfully capture this variability, but specifically, we
have used dynamic community detection, an extension of the network science
approach of functional modularity, that is a theoretically derived (but individualistic)
technique to probe dynamic network changes via a distillation of dynamic
connectivity matrices (Garcia et al., 2018). Our research adds to the general nature
of this technique to capture the broadly cognitive, distributed and adaptive nature of
the brain, the primary criteria for flexible brain regions and networks (Yin & Kaiser
2021).

Intermittent and persistent network reconfigurations are diagnostic of opinion
rigidity

Our results expand on the pervasiveness of the flexibility results. We show that, at
least for complex, high level decision making, not only the rapidly evolving network
reconfigurations (as measured by flexibility) are important but also the fast dynamics
of intermittent linking (same nodes linking in an on-off fashion) between modules are
more diagnostic of social media influence on one's opinion. Dynamic community
detection has proved to be an effective tool to explore temporal patterns in systems
represented by complex networks and a key aspect for this framework is the
determination of the temporal resolution of the dynamic communities (Telesford et.
al. 2016). A systematic way to determine a temporal resolution which leads to
behaviorally relevant network description of the brain can be achieved by modularity
maximization (Garcia et. al. 2018). Based on the dynamic communities obtained
through the modularity maximization algorithm, we explore the temporal patterns of
network links and how community allegiances of the network nodes change across
time.

A critical feature of our findings is the fact that the temporal profiles of the estimated
community structure is more diagnostic (e.g., intermittence) than simply the fact that
dynamic network reconfigurations occur. The temporal profile of interactions has a
fundamental importance on a wide range of phenomena such as the dynamics of
neuron  populations that lead to seizures (Jirsa et. al. 2014,
Rungratsameetaweemana et al, 2021), weather models and turbulent systems such
as the Lorenz attractor (Ruelle 1976) and the many synchronization phenomena in
which many units share the same temporal profile (Pikovsky et. al. 2001; Strogatz,
2000). From the point of view of dynamical systems, processes of opinion spreading
have been extensively studied using models such as the Voter (Holley and Liggett,
1975) and Majority rule models (Krapivsky & Redner, 2003), suggesting a complex
interactive scheme that gives rise to opinion formation and change. Interestingly,
recent findings suggest that information sharing and spreading occurs at a faster
pace in social media platforms than in-person social contacts and explores the
effects of these two time scales in a consensus formation model (Ding et. al., 2018).
With our approach, we explore this opinion change phenomenon at an individual
level using the complex networks framework to identify connectivity patterns of EEG
data that are diagnostic to an opinion change process during a social media
interaction. In aggregate, these findings coupled with our current results, suggest
similar operations at both the neural level and population level. Recent findings
suggest the brain (as well as other complex systems) operate outside of the
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boundaries of a particular spatial scale (Cocchi et. al., 2017). Perhaps, our results
are the consequence of information spread, whether within a single brain or across
human interactions and are suggestive of a scale-free phenomenon (Mahmoodi et.
al., 2017). Indeed, there are many complex systems that express this scale-free
behavior; however, it should be noted that recent findings have even shown that this
universal principle is flexible (Bansal et. al. 2021).

Network reconfigurations and oscillatory specificity suggest a complex
operation within the brain in opinion change

Despite the increasing efforts to understand the neural processes that underlie
deliberation and decision making, much on this subject remains unclear; however,
important findings from the literature in EEG oscillations, evidence accumulation,
valuation and identity may play critical roles in understanding our results. First, we
have shown that intermittence effects are more robust at higher frequencies than
lower frequencies in the observable EEG oscillatory scheme (e.g., gamma vs theta).
We also show that the delta band is most diagnostic for social interaction context.
Oscillations emanating from the brain, as measured with EEG, are a consequence of
short- and long-range connections within the brain that interact to give rise to
cognitive capabilities (Buzsaki 2006). Importantly, the slower oscillations mostly
represent the coordination of distal regions within cortex and sometimes even
modulate higher frequency oscillations within the brain (e.g., Bragin et al., 1995;
Chrobak and Buzsaki, 1998; Leopold et al.,, 2003; Schroeder and Lakatos, 2009;
Canolty et al., 2006; Buzsaki and Wang, 2012; more recent ones). In other words,
oscillatory activity and the associated cognitive functions rely on the global
coordination of local processes (Cavanaugh & Frank, 2014,
Rungratsameetaweemana et al., 2018). Within this context, it would suggest that
our results could be a consequence of both, where the most critical “intermittence”
effects were observed within the delta and gamma bands, “flexibility” effects were
most critical in the beta band, and social interaction context was most observed
within the delta band.

This broad coordination of neural communication in the brain gives rise to specific
cognitive functions, and our results could reflect several different operations at play.
First, our findings show the most significant results in flexibility within the beta band.
The beta band is often associated with motor behavior (Khanna & Carmena, 2015),
but has also been proposed to carry a more prominent role in maintaining motor or
cognitive states (Engel & Fries, 2010); interestingly, beta band dynamics have even
been associated with the accumulation of evidence in the sensorimotor network in a
vibrotactile decision task (Haegens et. al. 2011). Moreover, fMRI and transcranial
magnetic stimulation (TMS) studies have extensively implicated the so-called value
system in decision making, a system that is engaged when weighing the potential
benefits of a particular decision route. Critical components of this system are thought
to include the ventromedial prefrontal cortex (VMPFC) and ventral striatum (VS).
These regions, within social contexts, have been linked to susceptibility to social
influence from peers (for a comprehensive review see Falk & Scholz, 2018). More
broadly in EEG, several frequency bands have been implicated in decision making
(e.g., Nakao et. al. 2019), but often show some specificity in frontal and parietal
regions (e.g., Golnar-Nik et. al. 2019). Interestingly, a recent study inspecting long
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range temporal correlations (LRTC) in EEG recordings has shown a relationship
between theta to alpha bands and the abstract concept of self identity and identity
confusion (Sugimura et. al. 2021). Due to the highly complex decision, speculation,
and potential action, our results most likely indicate a complex coordination and
reconfiguration of networks within the brain, across several frequency bands and
reflect coordination of these processes including evidence accumulation, valuation
and even internal reflection on identity. Future research is needed to disentangle
these processes and influences on decision making context, especially within the
social media and in-person social contexts studied here.

Methodological limitations

Often with ecologically valid research, there is a limitation in understanding all
elements that have contributed to our findings. For example, each subject was able
to navigate freely through the social media content, and there was no control on how
much time was spent on each content. Our results don't take into account any
content-specific processes or differences on individual social media interaction, nor
do they consider the controversial and emotional aspects of the different scenarios
presented for the subjects. Within this context, our results are merely the first step
toward understanding the dynamic reconfigurations within the brain and how
different context and content interact to give rise to opinion change, highlighting the
difference between in-person discussion and social media interaction. Future studies
are needed to understand full contributions to session and subject level variability as
well as disentangle the “intermittence” results as potentially marking different internal
processes while interacting with social media or different strategies deployed for
social media interaction.

Conclusion

The current study used a complex network based framework (dynamic community
detection) to investigate the relationship of brain dynamics during social media
interaction with the opinion change and/or formation processes. Our results indicate
that the rapidly evolving network dynamics in delta, beta and gamma bands are the
markers of influence of social media platform interaction on opinions in a range of
scenarios, such that the slower dynamics is associated with individuals who are
more likely to change their opinion, i.e, malleable opinionators. We also introduced a
new metric called intermittence to assess differences in the observed faster or
slower network dynamics. Estimating the intermittent and persistent network
changes (as measured via intermittence), our results suggest that the functional
brain network structure for malleable opinionators also show differences when
interacting with social media platforms compared to in-person discussions. Together,
our results suggest unique decision making operations during social media
interaction and represent trait-like dynamics in individuals that are rigid or malleable
in their decisions.

Methods

Participants

The data was collected from a cohort of 123 healthy participants between the ages
of 18-40 years. Subjects were screened and the ones diagnosed with sleep,
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psychiatric, neurological, eating, behavioral (including Attention Deficit Disorder), or
cardio-pulmonary/vascular disorders, uncontrolled blood pressure, heart disease,
HIV+/AIDS, head trauma within the past 5 years, regular use of prescription drugs
that can alter EEG or impair their ability to participate, use of illegal drugs
(recreational and medical marijuana users were not excluded), excessive use of
nicotine, alcohol and/or caffeine, untreated vision or hearing issues, pregnant or
nursing, and inadequate familiarity with the English language were not included. For
more information on the recruiting procedure we refer the reader to (Richard et. al.,
2021). The data acquisition for this study using human participants was reviewed
and approved by Alpha IRB and Air Force Research Laboratory (AFRL). The
participants provided their written informed consent to participate in this study.

Procedures

For the experimental timeline and descriptive analysis of behavioral results (e.g.,
opinion change), see Figure 1. Briefly, after arriving in the laboratory, subjects were
presented with questionnaires that asked their opinions on particular real-world
scenarios found commonly on social media platforms. Questionnaires were
presented before and after interaction with the simulated social media platform as
well as after the in-person discussion segment. EEG was recorded during these two
interactive conditions, i.e., social media interaction and in-person discussion.

Scenarios

Three hypothetical scenarios were presented to the subjects. During each session,
subjects were exposed to the contents of three scenarios. The opinions of each
subject in the scenarios were accessed through questionnaires that were delivered
before and after interaction with a social media simulation software. The following
details the three scenarios analyzed in this study.

Free travel destinations. Within this scenario, subjects could choose between two
locations (Paris, France, or Sulawesi Island, Indonesia) for an all-paid one-week
vacation where each location was vulnerable to different dangers; Paris could have
large protests and sporadic violence and Sulawesi Island had the potential for a
destructive tsunami. Articles presented to the subjects mentioned these dangers and
mentioned how nice the locations were to visit, with equal representation. The
subjects were also given the opportunity to volunteer, in support of the rebuilding
effort following the catastrophic damage; they were also asked how much time they
were willing to dedicate to the rebuilding effort.

Murder trial. In this scenario, subjects were asked to imagine themselves in the jury
of a trial, which was based on a true story. After receiving information about a case in
which a young female college student was murdered, they were asked whether the
young man accused of murder should be considered guilty or not, and if guilty, the
length of the sentence or death.

Vaccinations. In this scenario the subjects were asked about vaccinating one of two
hypothetical children after the older one started to show development impairments
after being vaccinated. The questionnaire presented only the binary question if the
subject would vaccinate or not their second child, and the online content was equally
for or against vaccinations.
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Behavioral metrics

The subjects answered questions about each of the hypothetical scenarios and
oopinion changes on the topics of the three scenarios were evaluated to determine
the likelihood of opinion change. . Of the three scenarios, the vaccination scenario
was the only completely binary response as the fravel and murder scenarios
included followup questions that were not binary. Thus, several steps were
completed to include all three scenarios in the analysis and construct a behavioral
metric of opinion change.

For the three scenarios analyzed in this study, the social media opinion change was
coded as either a 0 (no change) or a 1 (change), indicating a change in opinion
relative to the previously answered questionnaire. In other words, for the social
media interaction, change was measured relative to the first questionnaire and for
the in-person discussion condition, opinion change was assessed relative to the
second questionnaire (completed after social media interaction). Change was coded
as follows: for the fravel scenario, a response was considered a change (1) in
opinion if any of the following were true: (i) the subject changed the destination
choice from France to Indonesia or vice versa, (ii) the subject modified their decision
to volunteer, or (iii) the subject changed the amount of time they would volunteer. For
the murder scenario, a response was considered a change if any of the following
were true, (i) the subject changed their opinion from guilty to not guilty and vice
versa, (ii) the subject changed their opinion on prison time or punishment. For the
vaccination scenario, the responses were either yes or no, so a response was
considered a change if it did not match the previous response. If the answers are all
identical to the previous survey, then the response was coded as a 0, or no change.
The social media opinion change score for each subject was estimated as the sum
of the social media opinion change scores of each individual scenario and could be
0,1,2, or 3, where a 3 represents a change in every scenario and 0 in none.

EEG Analysis

Preprocessing

EEG was acquired using the B-Alert R X24 wireless sensor headset (Advanced
Brain Monitoring, Inc., Carlsbad, CA, United States) placed on the subjects before
the subjects interacted with the social media platform. The headset is composed of
20 EEG sensors located according to the International 10-20 montage at Fz, Fp1,
Fp2, F3, F4, F7, F8, Cz, C3, C4, T3, T4, T5, T6, O1, 02, Pz, POz, P3, and P4.
Reference sensors were linked and located behind each ear along the mastoid bone
region. The sampling rate was 256 Hz and the signal was filtered through a high
band pass filter at 0.1 Hz and a low band bass, fifth order filter, at 100 Hz. To insure
high quality data was collected, a maximum allowable impedance was set to 40 k .
Next, the data was band-pass filtered within common frequency bands including
delta (1-3 Hz), theta (3-7 Hz), alpha (8-13 Hz), beta (21-30) and gamma (25-40)
using a low order (3) zero-phase forward and reverse digital IIR filter in Matlab
(Mathworks, Inc.).
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Functional Connectivity Analysis

To estimate the functional connectivity of the EEG recordings we calculated the
pairwise weighted Phase Lag Index (wPLI) within each frequency band of interest,
which is known to be highly sensitive to linear and nonlinear interactions (Imperatori
et al. 2019). For each sensor, the EEG (already band-wise filtered) was partitioned in
L windows with duration 10s. Each time window was used to calculate a matrix in
which each entry Al,], accounts for the weighted Phase Lag Index (wPLI) (Vinck et al.,

2011) for the pair of sensors i and j, calculated as:

o = LB
TOE{SX3

where E{} denotes the expected value and J{X} is the imaginary part of the
cross-spectrum of the EEG recordings of sensors i and j. The temporal layers
obtained by the described procedure were then used for the dynamic community
detection analysis described in the next section. Importantly, though, the number of
windows (L) were variable across subjects, with a mean L across subjects of 372
(SD =100).

Community Detection and Network Dynamics Metrics

While human brain mapping efforts have demonstrated a relationship between
spatial specificity and cognitive functions, techniques rooted in network science
provide a useful framework for characterizing and understanding the spatiotemporal
dynamics of the functional systems subserving cognition (Bassett & Sporns, 2017).
One of the core concepts at the basis of network science is network modularity,
which is the idea that neural units are structurally or functionally connected forming
modules or clusters (Garcia et al., 2018). This organization allows for the system to
perform both local-level exchanges of information, while maintaining system-level
performance. Here, we examine whether a particular node’s propensity to change
communities (i.e., flexibility) was related to change in opinions after interaction with a
social network platform. To measure such changes in network communities during
the interaction with the social media platform, a multilayer community detection
analysis was employed (Bassett et al., 2011; Mucha et al., 2010) on the
aforementioned wPLI estimates. This method uses a Louvain algorithm to maximize
modularity (Blondel et al., 2008) to define functional communities and is completed in
several steps. First, it relies on two parameters, y and o, so called structural and
temporal parameters of the analysis. We swept the parameter space from .5-4 for
each parameter, subject, and segment and compared the mean estimated
modularity value Q to a shuffled null dataset. We chose a parameter set that on
average produced more than 1 community and was the highest difference in
modularity from the estimated modularity from the shuffled null dataset (see Garcia
et al., 2020; Garcia et al., 2020 for a similar procedure). Due to the non-deterministic
nature of the analysis, the chosen optimization procedure was repeated 100 times,
since the algorithm is susceptible to multiple solutions (Good et al., 2010). From
these multiple iterations, the following community metrics were computed: (i)
flexibility, or proportion of time during which each node switches to a different
community assignment; (ii) allegiance, related to how long two nodes are connected
to each other during the task, and a new proposed metric (iii) intermittence, defined
as how rapidly two nodes connect and disconnect through communities. Those
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metrics were calculated for each of the 100 iterations, and our results used the mean
value for all the iterations. In more concrete terms, the flexibility of each node
corresponds to the number of instances in which a node changes community
affiliation, g, normalized by the total possible number of changes that could occur
across the layers L. In other words, the flexibility of a single node i, EL_, may be

estimated by
gi
Ei = L-1"
Allegiance is a metric calculated for each pair of nodes and accounts for the
proportion of the total time a pair of nodes belongs to the same community, and is

defined as:

L
. - L1
Allegiance | = - El 6Cj(t)Ck(t)’

where § denotes the Kronecker delta and ¢, denotes the community which

contains the node [ at time t. Therefore, SC Oc (t)equals 1 if the nodes jand k are in
j k

the same community at time layer t and equals 0 otherwise.

Further, to account for the temporal dynamics of allegiance, we proposed a new
metric, intermittence, which tracks how frequently the two nodes change their

affiliation from the same to different and vice versa. Intermittence is defined as:
L—-1
1

Intermlttencejk = ¥ 25 Ck(t)[

C]_(t+1)Ck(t+1)] + 6Cj(t+1)Ck(t+1)[ Cj(t)Ck(t)]'
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Figure 5: Flexibility, Allegiance, and Intermittence. (A) Example of a community
structure assignment for 8 time layers. (B) Representation for each time layer of the
community structure on (A).

To visualize the concept of intermittence consider the example in Figure 5. First
observe that the allegiance between nodes 1 and 4 is equal to the allegiance of
nodes 2 and 3, however the link between nodes 1 and 4 is present for two large
continuous epochs while the link between nodes 2 and 3 is connected for many short
epochs, this characterizes the intermittence between nodes 2 and 3 as larger than
the intermittence between nodes 1 and 4. Consider now the nodes 5 and 6, both
have the same allegiance with node 1, however since node 6 changes its community
assignment more often, its flexibility is higher than the flexibility of node 5. Observe
that unlike intermittence, flexibility is a property of the node and is not calculated for
individual links of the nodes.
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Statistical comparisons

Two types of statistical comparisons were completed within the manuscript. Primary
comparisons were between two groups, of unequal sizes, so-called rigid and
malleable opinionators. Due to the unequal sizes, bootstrap distributions (Wehrens
et. al., 2000) were estimated and used to estimate p-value and 95% confidence
intervals (Figures 2 and 3). For this method, 10,000 drawings (with replacement)
were made within each group for each node (Figure 2) or across nodes (Figure 3)
and distributions of the value (e.g., flexibility) or distributions of differences (e.g.,
intermittence - allegiance) were estimated. This process generated different
distributions, for which 95% confidence intervals were then estimated. In the final
analysis, Welch'’s t-test was used to compare the two group means, as it is robust to
potential variance differences between groups.

Acknowledgements

This research was sponsored by the US DEVCOM Army Research Laboratory and
was completed under Cooperative Agreement Numbers W911NF2020067 (I.L.D.P.),
and W911NF-17-2-0158 (K.B.). The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the US DEVCOM Army Research
Laboratory or the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation herein.

References

Gold, J. I., & Shadlen, M. N. (2007). The Neural Basis of Decision Making. Annual
Review of Neuroscience, 30(1), 535-574.
https://doi.org/10.1146/annurev.neuro.29.051605.113038

Fellows, L. K. (2004). The cognitive neuroscience of human decision making: a
review and conceptual framework. Behavioral and Cognitive Neuroscience Reviews,
3(3), 159-172. https://doi.org/10.1177/1534582304273251

Westerman, D., Spence, P. R., & Van Der Heide, B. (2014). Social Media as
Information Source: Recency of Updates and Credibility of Information. Journal of
Computer-Mediated Communication, 19(2), 171-183.
https://doi.org/10.1111/jcc4.12041

Keles, B., McCrae, N., & Grealish, A. (2020). A systematic review: the influence of
social media on depression, anxiety and psychological distress in adolescents.
International Journal of Adolescence and  Youth, 25(1), 79-93.
https://doi.org/10.1080/02673843.2019.1590851

Yoo, E., Rand, W., Eftekhar, M., & Rabinovich, E. (2016). Evaluating information
diffusion speed and its determinants in social media networks during humanitarian


https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.1177/1534582304273251
https://doi.org/10.1111/jcc4.12041
https://doi.org/10.1080/02673843.2019.1590851
https://doi.org/10.1101/2021.12.07.471625
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471625; this version posted December 9, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

crises. Journal of Operations Management, 45, 123-133.
https://doi.org/10.1016/j.jom.2016.05.007

Spinney, L. (2017). The shared past that wasn’'t: How Facebook, fake news and
friends are altering memories and changing history. Nature, 543(9), 168-170.
https://www.doi.org/10.1038/543168a.

Schmalzle, R., O’'Donnell, M. B., Garcia, J. O., Cascio, C. N., Bayer, J., Bassett, D.
S., Vettel, J. M., & Falk, E. B. (2017). Brain connectivity dynamics during social
interaction reflect social network structure. Proceedings of the National Academy of
Sciences of the United States of America, 114(20), 5153-5158.
https://doi.org/10.1073/pnas.1616130114

Falk, E., & Scholz, C. (2018). Persuasion, Influence, and Value: Perspectives from
Communication and Social Neuroscience. Annual Review of Psychology, 69(1),
329-356. https://doi.org/10.1146/annurev-psych-122216-011821.

Fleming, S. M., Van Der Putten, E. J., & Daw, N. D. (2018). Neural mediators of
changes of mind about perceptual decisions. Nature Neuroscience, 21(4), 617-624.
https://doi.org/10.1038/s41593-018-0104-6.

Kaplan, J. T., Gimbel, S. I., & Harris, S. (2016). Neural correlates of maintaining
one’s political beliefs in the face of counterevidence. Scientific Reports,

6(December), 1-11. hitps://doi.org/10.1038/srep39589

Edelson, M. G., Dudai, Y., Dolan, R. J., & Sharot, T. (2014). Brain substrates of
recovery from misleading influence. Journal of Neuroscience, 34(23), 7744—-7753.
https://doi.org/10.1523/JNEUROSCI.4720-13.2014

lzuma, K., Matsumoto, M., Murayama, K., Samejima, K., Sadato, N., & Matsumoto,
K. (2010). Neural correlates of cognitive dissonance and choice-induced preference
change. Proceedings of the National Academy of Sciences of the United States of
America, 107(51), 22014—22019. https://doi.org/10.1073/pnas.1011879108

Colosio, M., Shestakova, A., Nikulin, V. V., Blagovechtchenski, E., & Klucharev, V.
(2017). Neural mechanisms of cognitive dissonance (Revised): An EEG study.
Journal of Neuroscience, 37(20), 5074-5083.
https://doi.org/10.1523/JNEUROSCI.3209-16.2017

Dorée, B. P., Cooper, N., Scholz, C., O'Donnell, M. B., & Falk, E. B. (2019). Cognitive
regulation of ventromedial prefrontal activity evokes lasting change in the perceived
self-relevance of persuasive messaging. Human Brain Mapping, 40(9), 2571-2580.
https://doi.org/10.1002/hbm.24545

Bai, Y., Nakao, T., Xu, J., Qin, P., Chaves, P, Heinzel, A., Duncan, N., Lane, T., Yen,
N. S., Tsai, S. Y., & Northoff, G. (2016). Resting state glutamate predicts elevated
pre-stimulus alpha during self-relatedness: A combined EEG-MRS study on “rest-self
overlap.” Social Neuroscience, 11(3), 249-263.
https://doi.org/10.1080/17470919.2015.1072582



https://doi.org/10.1016/j.jom.2016.05.007
https://www.doi.org/10.1038/543168a
https://doi.org/10.1073/pnas.1616130114
https://doi.org/10.1146/annurev-psych-122216-011821
https://doi.org/10.1038/s41593-018-0104-6
https://doi.org/10.1038/srep39589
https://doi.org/10.1523/JNEUROSCI.4720-13.2014
https://doi.org/10.1073/pnas.1011879108
https://doi.org/10.1523/JNEUROSCI.3209-16.2017
https://doi.org/10.1002/hbm.24545
https://doi.org/10.1080/17470919.2015.1072582
https://doi.org/10.1101/2021.12.07.471625
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471625; this version posted December 9, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Wokke, M. E., Cleeremans, A., & Ridderinkhof, K. R. (2017). Sure i'm sure:
Prefrontal oscillations support metacognitive monitoring of decision making. Journal
of Neuroscience, 37(4), 781-789. https://doi.org/10.1523/JNEUROSCI.1612-16.2016

Casado-Aranda, L. A., Venkatraman, V., Sanchez-Fernandez, J., & Luque-Martinez,
T. (2020). Does Partisan Bias Modulate Neural Processing of Political Information?
An Analysis of the Neural Correlates of Corruption and Positive Messages. Political
Psychology, 41(1), 145—164. https://doi.org/10.1111/pops.12581

Cascio, C. N., Scholz, C., & Falk, E. B. (2015). Social influence and the brain:
Persuasion, susceptibility to influence and retransmission. Current Opinion in
Behavioral Sciences, 3, 51-57. https://doi.org/10.1016/|.cobeha.2015.01.007

Falk, E. B., Way, B. M., & Jasinska, A. J. (2012). An imaging genetics approach to
understanding social influence. Frontiers in Human Neuroscience, 6(JUNE 2012),
1-13. https://doi.org/10.3389/fnhum.2012.00168

Li, L., Li, K. K., & Li, J. (2019). Private but not social information validity modulates
social conformity bias. Human Brain Mapping, 40(8), 2464-2474.
https://doi.org/10.1002/hbm.24536

Sherman, L. E., Payton, A. A., Hernandez, L. M., Greenfield, P. M., & Dapretto, M.
(2016). The Power of the Like in Adolescence: Effects of Peer Influence on Neural
and Behavioral Responses to Social Media. Psychological Science, 27(7),
1027-1035. https://doi.org/10.1177/0956797616645673

Baek, E. C., O’Donnell, M. B., Scholz, C., Pei, R., Garcia, J. O., Vettel, J. M., & Falk,
E. B. (2021). Activity in the brain’s valuation and mentalizing networks is associated
with propagation of online recommendations. Scientific Reports, 11(1), 1-11.
https://doi.org/10.1038/s41598-021-90420-2

Nakao, T., Kanayama, N., Katahira, K., Odani, M., Ito, Y., Hirata, Y., Nasuno, R.,
Ozaki, H., Hiramoto, R., Miyatani, M., & Northoff, G. (2016). Post-response By power
predicts the degree of choice-based learning in internally guided decision-making.
Scientific Reports, 6(August), 1-9. https://doi.org/10.1038/srep32477

Kappes, A., Harvey, A. H., Lohrenz, T., Montague, P. R., & Sharot, T. (2020).
Confirmation bias in the utilization of others’ opinion strength. Nature Neuroscience,
23(1), 130-137. https://doi.org/10.1038/s41593-019-0549-2

lzuma, K., & Adolphs, R. (2013). Social manipulation of preference in the human
brain. Neuron, 78(3), 563-573. https://doi.org/10.1016/|.neuron.2013.03.023

Klucharev, V., Munneke, M. A. M., Smidts, A., & Fernandez, G. (2011).
Downregulation of the posterior medial frontal cortex prevents social conformity.
Journal of Neuroscience, 31(33), 11934-11940.
https://doi.org/10.1523/JNEUROSCI.1869-11.2011

Garcia, J. O., Ashourvan, A., Muldoon, S., Vettel, J. M., & Bassett, D. S. (2018).
Applications of Community Detection Techniques to Brain Graphs: Algorithmic


https://doi.org/10.1523/JNEUROSCI.1612-16.2016
https://doi.org/10.1111/pops.12581
https://doi.org/10.1016/j.cobeha.2015.01.007
https://doi.org/10.3389/fnhum.2012.00168
https://doi.org/10.1002/hbm.24536
https://doi.org/10.1177/0956797616645673
https://doi.org/10.1038/s41598-021-90420-2
https://doi.org/10.1038/srep32477
https://doi.org/10.1038/s41593-019-0549-2
https://doi.org/10.1016/j.neuron.2013.03.023
https://doi.org/10.1523/JNEUROSCI.1869-11.2011
https://doi.org/10.1101/2021.12.07.471625
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471625; this version posted December 9, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Considerations and Implications for Neural Function. Proceedings of the IEEE,
106(5), 846—-867. https://doi.org/10.1109/JPROC.2017.2786710.

Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton,
S. T. (2011). Dynamic reconfiguration of human brain networks during learning.
Proceedings of the National Academy of Sciences of the United States of America,
108(18), 7641-7646. https://doi.org/10.1073/pnas.1018985108.

Bassett, D. S., Wymbs, N. F., Rombach, M. P, Porter, M. A., Mucha, P. J., & Grafton,
S. T. (2013). Task-Based Core-Periphery Organization of Human Brain Dynamics.
PLoS Computational Biology, 9(9), 1-16.
https://doi.org/10.1371/journal.pcbi.1003171

Gerraty, R. T., Davidow, J. Y., Foerde, K., Galvan, A., Bassett, D. S., & Shohamy, D.
(2018). Dynamic flexibility in striatal-cortical circuits supports reinforcement learning.
Journal of Neuroscience, 38(10), 2442-2453.
https://doi.org/10.1523/JNEUROSCI.2084-17.2018

Reddy, P. G., Mattar, M. G., Murphy, A. C., Wymbs, N. F., Grafton, S. T,
Satterthwaite, T. D., & Bassett, D. S. (2018). Brain state flexibility accompanies
motor-skill  acquisition.  Neurolmage, 171(December  2017), 135-147.
https://doi.org/10.1016/j.neuroimage.2017.12.093

Alavash, M., Hilgetag, C. C., Thiel, C. M., & Gielding, C. (2015). Persistency and
flexibility of complex brain networks underlie dual-task interference. Human Brain
Mapping, 36(9), 3542—-3562. https://doi.org/10.1002/hbm.22861

Shafiei, S. B., Elsayed, A. S., Hussein, A. A, Igbal, U., & Guru, K. A. (2020).
Evaluating the Mental Workload During Robot-Assisted Surgery Utilizing Network
Flexibility = of  Human Brain. IEEE  Access, 8, 204012-204019.
https://doi.org/10.1109/access.2020.3036751

Thomas Yeo, B. T., Krienen, F. M., Eickhoff, S. B., Yaakub, S. N., Fox, P. T., Buckner,
R. L., Asplund, C. L., & Chee, M. W. L. (2015). Functional specialization and
flexibility in human association cortex. Cerebral Cortex, 25(10), 3654-3672.
https://doi.org/10.1093/cercor/bhu217

Telesford, Q. K., Lynall, M. E., Vettel, J., Miller, M. B., Grafton, S. T., & Bassett, D. S.
(2016). Detection of functional brain network reconfiguration during task-driven
cognitive states. Neurolmage, 142, 198-210.
https://doi.org/10.1016/j.neuroimage.2016.05.078

Chai, L. R., Mattar, M. G., Blank, |. A., Fedorenko, E., & Bassett, D. S. (2016).
Functional Network Dynamics of the Language System. Cerebral Cortex, 26(11),
4148-4159. https://doi.org/10.1093/cercor/bhw238

Han, S., Cui, Q., Wang, X,, Li, L., Li, D., He, Z., Guo, X, Fan, Y. S., Guo, J., Sheng,
W., Lu, F., & Chen, H. (2020). Resting state functional network switching rate is
differently altered in bipolar disorder and major depressive disorder. Human Brain
Mapping, 41(12), 3295-3304. https://doi.org/10.1002/hbm.25017



https://doi.org/10.1109/JPROC.2017.2786710
https://doi.org/10.1073/pnas.1018985108
https://doi.org/10.1371/journal.pcbi.1003171
https://doi.org/10.1523/JNEUROSCI.2084-17.2018
https://doi.org/10.1016/j.neuroimage.2017.12.093
https://doi.org/10.1002/hbm.22861
https://doi.org/10.1109/access.2020.3036751
https://doi.org/10.1093/cercor/bhu217
https://doi.org/10.1016/j.neuroimage.2016.05.078
https://doi.org/10.1093/cercor/bhw238
https://doi.org/10.1002/hbm.25017
https://doi.org/10.1101/2021.12.07.471625
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471625; this version posted December 9, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Lydon-Staley, D. M., Kuehner, C., Zamoscik, V., Huffziger, S., Kirsch, P., & Bassett,
D. S. (2019). Repetitive negative thinking in daily life and functional connectivity
among default mode, fronto-parietal, and salience networks. Translational
Psychiatry, 9(1). https://doi.org/10.1038/s41398-019-0560-0

Paban, V., Modolo, J., Mheich, A., & Hassan, M. (2019). Psychological resilience
correlates with EEG source-space brain network flexibility. Network Neuroscience,
3(2), 539-550. https://doi.org/10.1162/netn_a_00079

Betzel, R. F., & Bassett, D. S. (2017). Multi-scale brain networks. Neurolmage,
160(November 2016), 73—-83. https://doi.org/10.1016/j.neurocimage.2016.11.006

Braun, U., Schafer, A., Walter, H., Erk, S., Romanczuk-Seiferth, N., Haddad, L.,
Schweiger, J. I., Grimm, O., Heinz, A., Tost, H., Meyer-Lindenberg, A., & Bassett, D.
S. (2015). Dynamic reconfiguration of frontal brain networks during executive
cognition in humans. Proceedings of the National Academy of Sciences of the United
States of America, 112(37), 11678-11683. https://doi.org/10.1073/pnas.1422487112

Lauharatanahirun, N., Bansal, K., Thurman, S. M., Vettel, J. M., Giesbrecht, B.,
Grafton, S., Elliott, J. C., Flynn-Evans, E., Falk, E., & Garcia, J. O. (2020). Flexibility
of brain regions during working memory curtails cognitive consequences to lack of
sleep. i. http://arxiv.org/abs/2009.07233

Barbey, A. K. (2018). Network Neuroscience Theory of Human Intelligence. Trends
in Cognitive Sciences, 22(1), 8—20. https://doi.org/10.1016/].tics.2017.10.001

Imperatori, L. S., Betta, M., Cecchetti, L., Canales-Johnson, A., Ricciardi, E., Siclari,
F., Pietrini, P., Chennu, S., & Bernardi, G. (2019). EEG functional connectivity
metrics wPLI and wSMI account for distinct types of brain functional interactions.
Scientific Reports, 9(1), 1-15. https://doi.org/10.1038/s41598-019-45289-7.

Vinck, M., Oostenveld, R., Van Wingerden, M., Battaglia, F., & Pennartz, C. M. A.
(2011). An improved index of phase-synchronization for electrophysiological data in
the presence of volume-conduction, noise and sample-size bias. Neurolmage, 55(4),
1548-1565. https://doi.org/10.1016/j.neuroimage.2011.01.055.

Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience,
20(3), 353-364. https://doi.org/10.1038/nn.4502.

Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J. P. (2010).
Community structure in time-dependent, multiscale, and multiplex networks.
Science, 328(5980), 876—878. https://doi.org/10.1126/science.1184819.

Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10). https://doi.org/10.1088/1742-5468/2008/10/P10008.



https://doi.org/10.1038/s41398-019-0560-0
https://doi.org/10.1162/netn_a_00079
https://doi.org/10.1016/j.neuroimage.2016.11.006
https://doi.org/10.1073/pnas.1422487112
http://arxiv.org/abs/2009.07233
https://doi.org/10.1016/j.tics.2017.10.001
https://doi.org/10.1038/s41598-019-45289-7
https://doi.org/10.1016/j.neuroimage.2011.01.055
https://doi.org/10.1038/nn.4502
https://doi.org/10.1126/science.1184819
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1101/2021.12.07.471625
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471625; this version posted December 9, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Good, B. H., De Montjoye, Y. A., & Clauset, A. (2010). Performance of modularity
maximization in practical contexts. Physical Review E - Statistical, Nonlinear, and
Soft Matter Physics, 81(4), 1-20. https://doi.org/10.1103/PhysRevE.81.046106.

Richard, C., Kari¢, M. S., McConnell, M., Poole, J., Rupp, G., Fink, A., Meghdadi, A.,
& Berka, C. (2021). Elevated Inter-Brain Coherence Between Subjects With
Concordant Stances During Discussion of Social Issues. Frontiers in Human
Neuroscience, 15(May), 1-11. https://doi.org/10.3389/fnhum.2021.611886

Hardmeier, M., Hatz, F., Bousleiman, H., Schindler, C., Stam, C. J., & Fuhr, P.
(2014). Reproducibility of functional connectivity and graph measures based on the
phase lag index (PLI) and weighted phase lag index (wPLI) derived from high
resolution EEG. PLoS ONE, 9(10). https://doi.org/10.1371/journal.pone.0108648

Uddin, L. Q. (2020). Bring the Noise: Reconceptualizing Spontaneous Neural
Activity. Trends in Cognitive Sciences, 24(9), 734-746.
https://doi.org/10.1016/j.tics.2020.06.003

Doron, K. W., Bassett, D. S., & Gazzaniga, M. S. (2012). Dynamic network structure
of interhemispheric coordination. Proceedings of the National Academy of Sciences
of the United States of America, 109(46), 18661-18668.
https://doi.org/10.1073/pnas.1216402109

Rilling, J. K., & Sanfey, A. G. (2011). The neuroscience of social decision-making.
Annual review of psychology, 62, 23-48.
https://doi.org/10.1146/annurev.psych.121208.131647

Wallace, K. J., & Hofmann, H. A. (2021). Decision-making in a social world:
Integrating cognitive ecology and social neuroscience. Current Opinion in
Neurobiology, 68, 152—158. https://doi.org/10.1016/j.conb.2021.03.009

Shine, J. M., & Poldrack, R. A. (2018). Principles of dynamic network reconfiguration
across diverse brain states. Neurolmage, 180(March 2017), 396—405.
https://doi.org/10.1016/j.neurocimage.2017.08.010

Cooper, N., Garcia, J. O., Tompson, S. H., O'Donnell, M. B., Falk, E. B., & Vettel, J.
M. (2019). Time-evolving dynamics in brain networks forecast responses to health
messaging. Network Neuroscience, 3(1), 138-156.
https://doi.org/10.1162/netn_a_00058

Yin, D., & Kaiser, M. (2021). Understanding neural flexibility from a multifaceted
definition. Neurolmage, 235(October 2020), 118027.

https://doi.org/10.1016/j.neurocimage.2021.118027

Mattar, M. G., Betzel, R. F., & Bassett, D. S. (2016). The flexible brain. Brain, 139(8),
2110-2112. https://doi.org/10.1093/brain/aww151

Hanes, K., Andrewes, D., & Pantelis, C. (1995). Cognitive flexibility and complex
integration in Parkinson's disease, Huntington's disease, and Schizophrenia. Journal


https://doi.org/10.1103/PhysRevE.81.046106
https://doi.org/10.3389/fnhum.2021.611886
https://doi.org/10.1371/journal.pone.0108648
https://doi.org/10.1016/j.tics.2020.06.003
https://doi.org/10.1073/pnas.1216402109
https://doi.org/10.1146/annurev.psych.121208.131647
https://doi.org/10.1016/j.conb.2021.03.009
https://doi.org/10.1016/j.neuroimage.2017.08.010
https://doi.org/10.1162/netn_a_00058
https://doi.org/10.1016/j.neuroimage.2021.118027
https://doi.org/10.1093/brain/aww151
https://doi.org/10.1101/2021.12.07.471625
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471625; this version posted December 9, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

of the International Neuropsychological Society, 1(6), 545-553.
https://doi.org/10.1017/S1355617700000679

Jirsa, V. K., Stacey, W. C., Quilichini, P. P,, Ivanov, A. I., & Bernard, C. (2014). On the
nature of seizure dynamics. Brain, 137(8), 2210-2230.

https://doi.org/10.1093/brain/awu133

Rungratsameetaweemana, N., Lainscsek, C., Cash, S. S., Garcia, J. O., Sejnowski,
T. J., & Bansal, K. (2021). Brain network dynamics codify heterogeneity in seizure
propagation. bioRxiv. https: 1.org/10.1101/2021.06.12.4482

Ruelle, D. (1976). The Lorenz attractor and the problem of turbulence. In Turbulence
and Navier Stokes Equations (pp. 146-158). Springer, Berlin, Heidelberg.

Pikovsky, A., Rosenblum, M., Kurths, J., & Synchronization, A. (2001). A universal
concept in nonlinear sciences. Self, 2, 3.

Strogatz, S. H. (2000). From Kuramoto to Crawford: Exploring the onset of
synchronization in populations of coupled oscillators. Physica D: Nonlinear
Phenomena, 143(1-4), 1-20. https://doi.org/10.1016/S0167-2789(00)00094-4

Holley, R. A., & Liggett, T. M. (1975). Ergodic theorems for weakly interacting infinite
systems and the voter model. The annals of probability, 643-663.

Krapivsky, P. L., & Redner, S. (2003). Dynamics of Majority Rule in Two-State
Interacting Spin Systems. Physical Review  Letters, 90(23), 4.

https://doi.org/10.1103/PhysRevl ett.90.238701

Cocchi, L., Gollo, L. L., Zalesky, A., & Breakspear, M. (2017). Criticality in the brain:
A synthesis of neurobiology, models and cognition. Progress in Neurobiology, 158,

132-152. https://doi.org/10.1016/j.pneurobio.2017.07.002

Mahmoodi, K., West, B. J., & Grigolini, P. (2017). Self-organizing complex networks:
Individual versus global rules. Frontiers in Physiology, 8(JUL), 1-11.

https://doi.org/10.3389/fphys.2017.00478

Bansal, K., Garcia, J. O., Lauharatanahirun, N., Muldoon, S. F., Sajda, P., & Vettel, J.
M. (2021). Scale-specific dynamics of high-amplitude bursts in EEG capture
behaviorally = meaningful  variability. Neurolmage,  241(June), 118425.

https://doi.org/10.1016/j.neurcimage.2021.118425

Buzsaki, Gyorgy. Rhythms of the Brain. Oxford university press, 2006.

Bragin, A., Jando, G., Nadasdy, Z., Hetke, J., Wise, K., & Buzsaki, G. (1995).
Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. Journal of

neuroscience, 15(1), 47-60. https://doi.org/10.1523/JNEUROSCI.15-01-00047.1995

Chrobak, J. J., & Buzsaki, G. (1998). Gamma oscillations in the entorhinal cortex of
the freely behaving rat. Journal of Neuroscience, 18(1), 388-398.
https://doi.org/10.1523/jneurosci.18-01-00388.1998



https://doi.org/10.1093/brain/awu133
https://doi.org/10.1093/brain/awu133
https://doi.org/10.1101/2021.06.12.448205
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1103/PhysRevLett.90.238701
https://doi.org/10.1016/j.pneurobio.2017.07.002
https://doi.org/10.3389/fphys.2017.00478
https://doi.org/10.1016/j.neuroimage.2021.118425
https://doi.org/10.1523/JNEUROSCI.15-01-00047.1995
https://doi.org/10.1523/jneurosci.18-01-00388.1998
https://doi.org/10.1101/2021.12.07.471625
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471625; this version posted December 9, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Leopold, D. A., Murayama, Y., & Logothetis, N. K. (2003). Very slow activity
fluctuations in monkey visual cortex: Implications for functional brain imaging.
Cerebral Cortex, 13(4), 422-433. https://doi.org/10.1093/cercor/13.4.422

Schroeder, C. E., & Lakatos, P. (2009). The Gamma Oscillation: Master or Slave?
Brain Topography, 22(1), 24—-26. https://doi.org/10.1007/s10548-009-0080-y

Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Berger, M. S.,
Barbaro, N. M., & Knight, R. T. (2009). NIH Public Access. 313(5793), 1626—-1628.

https://doi.org/10.1126/science.1128115.High

Buzsaki, G., & Wang, X. J. (2012). Mechanisms of gamma oscillations. Annual
review of neuroscience, 35, 203-225.
https://doi.org/10.1146/annurev-neuro-062111-150444

Cavanagh, J. & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive
control. Trends Cogn Sci, 18(8), 414-21. https://doi.org/10.1016/j.tics.2014.04.012

Rungratsameetaweemana, N., Itthipuripat, S., Salazar, A., & Serences, J. T. (2018).
Expectations do not alter early sensory processing during perceptual
decision-making. Journal of Neuroscience, 38(24), 5632-5648.
https://doi.org/10.1523/JNEUROSCI.3638-17.2018

Khanna, P., & Carmena, J. M. (2015). Neural oscillations: Beta band activity across
motor  networks. Current  Opinion in Neurobiology, 32, 60-67.
https://doi.org/10.1016/j.conb.2014.11.010

Engel, A. K., & Fries, P. (2010). Beta-band oscillations-signalling the status quo?
Current Opinion in Neurobiology, 20(2), 156-165.

https://doi.org/10.1016/j.conb.2010.02.015

Haegens, S., Handel, B. F., & Jensen, O. (2011). Top-down controlled alpha band
activity in somatosensory areas determines behavioral performance in a
discrimination  task.  Journal  of  Neuroscience, 31(14), 5197-5204.
https://doi.org/10.1523/JNEUROSCI.5199-10.2011

Nakao, T., Miyagi, M., Hiramoto, R., Wolff, A., Gomez-Pilar, J., Miyatani, M., &
Northoff, G. (2019). From neuronal to psychological noise — Long-range temporal
correlations in EEG intrinsic activity reduce noise in internally-guided decision
making. Neurolmage, 201(June), 116015.
https://doi.org/10.1016/j.neuroimage.2019.116015

Golnar-Nik, P., Farashi, S., & Safari, M. S. (2019). The application of EEG power for
the prediction and interpretation of consumer decision-making: A neuromarketing
study. Physiology and Behavior, 207(April), 90-98.
https://doi.org/10.1016/j.physbeh.2019.04.025

Sugimura, K., lwasa, Y., Kobayashi, R., Honda, T., Hashimoto, J., Kashihara, S.,
Zhu, J., Yamamoto, K., Kawahara, T., Anno, M., Nakagawa, R., Hatano, K., &


https://doi.org/10.1093/cercor/13.4.422
https://doi.org/10.1007/s10548-009-0080-y
https://doi.org/10.1126/science.1128115.High
https://doi.org/10.1146/annurev-neuro-062111-150444
https://doi.org/10.1016/j.tics.2014.04.012
https://doi.org/10.1523/JNEUROSCI.3638-17.2018
https://doi.org/10.1016/j.conb.2014.11.010
https://doi.org/10.1016/j.conb.2010.02.015
https://doi.org/10.1523/JNEUROSCI.5199-10.2011
https://doi.org/10.1016/j.neuroimage.2019.116015
https://doi.org/10.1016/j.physbeh.2019.04.025
https://doi.org/10.1101/2021.12.07.471625
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471625; this version posted December 9, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Nakao, T. (2021). Association between long-range temporal correlations in intrinsic
EEG activity and subjective sense of identity. Scientific Reports, 11(1), 422.
https://doi.org/10.1038/s41598-020-79444-2

Wehrens, R., Putter, H., & Buydens, L. M. C. (2000). The bootstrap: A tutorial.
Chemometrics  and Intelligent  Laboratory = Systems,  54(1), 35-52.
https://doi.org/10.1016/S0169-7439(00)00102-7

Supplemental Material

EEG sensor position

The EEG recordings were obtained using the B-Alert R X24 wireless sensor headset
(Advanced Brain Monitoring, Inc., Carlsbad, CA, United States), the system has 20
channels and the montage layout is presented in (Figure S1). The reference sensors
were located behind each ear on the mastoid bone. The sample rate was 256 Hz
with a high band pass at 0.1 Hz and a low band bass at 100 Hz.
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Sensor positions (eeg)

Figure S1: EEG sensor position. The topo plot shows the sensor montage. The
EEG recording system model used was B-Alert R X24 wireless sensor headset
(Advanced Brain Monitoring, Inc., Carlsbad, CA, United States) with 20 channels.

Node allegiance

To further understand the differences between rigid and malleable opinionators in
terms of network reconfigurations, we explored how the network nodes, particularly
the nodes that showed significant difference in flexibility between two groups,
(significant nodes, Figure 2) changed their functional allegiances. Allegiance is
defined as the fraction of the total time two nodes are in the same community. First,
we calculated the allegiance metric between all the node pairs and then compared
them between two groups. None of the node pairs (including or excluding the
significant nodes) showed a significant difference between rigid and malleable
opinionators. Whereas, on an average, some of the node-pairs showed higher
allegiances for rigid opinionators while some showed higher allegiances for the
malleable opinionators. In Figure S2, we show average allegiance differences
between two groups. Yellow entries in the matrices represent higher allegiances for
rigid opinionators. In topographical plots we show these differences only for the
significant nodes.
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Figure S2: Node allegiance differences. The matrices show average allegiance
differences between the two groups (rigid and malleable opinionators). The topo
plots show the mean allegiance differences for sensors which showed significant
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flexibility changes between the two groups (as discussed in Figure 2). The links in
yellow (blue) indicate a higher (lower) allegiance value for the rigid (malleable)

group.

Consensus community structure

We calculated the consensus community structure for the time layers of each subject
and estimated the mean and standard deviation for degrees both within and across
communities. This procedure generated two communities, one in the frontal region
with 11 sensors (Fp1, F7, F8, T3, Fp2, F3, Fz, F4, C4, C3, Cz) and the other on the
rear region with 9 sensors (T4, T6, T5, O1, P3, Pz, P4, POz, O2). The topo plot is
presented in (Figure S3)

RN

Figure S3: Consensus community structures. The topo plot shows the regions of
the two communities obtained through consensus on the entire cohort of subjects.
First was calculated the consensus community of the time layers for each subject,
the resulting community structure was used to obtain the consensus community
structure for the entire cohort of subjects.
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